Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues.
نویسندگان
چکیده
Rat peroxisomal carnitine octanoyltransferase (COT), which facilitates the transport of medium-chain fatty acids through the peroxisomal membrane, is irreversibly inhibited by the hypoglycaemia-inducing drug etomoxir. To identify the molecular basis of this inhibition, cDNAs encoding full-length wild-type COT, two different variant point mutants and one variant double mutant from rat peroxisomal COT were expressed in Saccharomyces cerevisiae, an organism devoid of endogenous COT activity. The recombinant mutated enzymes showed activity towards both carnitine and decanoyl-CoA in the same range as the wild type. Whereas the wild-type version expressed in yeast was inhibited by etomoxir in an identical manner to COT from rat liver peroxisomes, the activity of the enzyme containing the double mutation H131A/H340A was completely insensitive to etomoxir. Individual point mutations H131A and H340A also drastically reduced sensitivity to etomoxir. Taken together, these results indicate that the two histidine residues, H131 and H340, are the sites responsible for inhibition by etomoxir and that the full inhibitory properties of the drug will be shown only if both histidines are intact at the same time. Our data demonstrate that both etomoxir and malonyl-CoA inhibit COT by interacting with the same sites.
منابع مشابه
Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues.
The mitochondrial outer membrane enzyme carnitine palmitoyltransferase I (CPT I) plays a major role in the regulation of fatty acid entry into the mitochondrial matrix for beta-oxidation by virtue of its inhibition by malonyl-CoA. Two isoforms of CPT I, the liver type (L) and muscle type (M), have been identified, the latter being 100 times more sensitive to malonyl-CoA and having a much higher...
متن کاملEvidence for Histidine Residues on Plasma Membrane Phosphatidate Phosphohydrolase from Rat Liver
Objective(s) Phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to yield Pi and diacylglycerol. Two different forms of PAP in rat hepatocyte have been reported. PAP1 is located in cytosolic and microsomal fractions and participates in the synthesis of triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine, whereas the other form of phosphati...
متن کاملPeroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.
Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in...
متن کاملInhibition of carnitine palmitoyltransferase in the rat small intestine reduces export of triacylglycerol into the lymph.
Following digestion of dietary triacylglycerol (TAG), intestinal epithelial cells absorb fatty acids and monoacylglycerols that are resynthesized into TAG by enzymes located on the endoplasmic reticulum (ER). A study in rat liver (Abo-Hashema, K. A., M. H. Cake, G. W. Power, and D. J. Clarke. 1999. Evidence for TAG synthesis in the lumen of microsomes via a lipolysis-esterification pathway invo...
متن کاملStructural Model of the Catalytic Core of Carnitine Palmitoyltransferase I and Carnitine Octanoyltransferase (COT)
Carnitine palmitoyltransferase I (CPT I) and carnitine octanoyltransferase (COT) catalyze the conversion of longand medium-chain acyl-CoA to acylcarnitines in the presence of carnitine. We propose a common threedimensional structural model for the catalytic domain of both, based on fold identification for 200 amino acids surrounding the active site through a threading approach. The model is bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 351 Pt 2 شماره
صفحات -
تاریخ انتشار 2000